A

B

Transformations

You can change the equation of a graph to translate it, stretch it or reflect it. In the exam you might have to use functions to describe these transformations.

 Function	y = f(x) + a	y = f(x + a)	y = af(x)
Transformation of graph	Translation $\binom{O}{a}$	Translation $\begin{pmatrix} -a \\ 0 \end{pmatrix}$	Stretch in the vertical direction, scale factor a
Useful to know	$f(x) + a \rightarrow move UP a units$ $f(x) - a \rightarrow move DOWN a units$	$f(x + a) \rightarrow move LEFT a units$ $f(x - a) \rightarrow move RIGHT a units$	x-values stay the same
Example	y = f(x) + 3	y <u></u>	y = 3f(x)
	y = f(x)	y = f(x)	y = f(x)

Function	y = f(ax)	y = -f(x)	y = f(-x)
Transformation	Stretch in the horizontal	Reflection in the x-axis	Reflection in the y-axis
of graph	direction, scale factor $\frac{1}{a}$		
Useful to know	y-values stay the same	'-' outside the bracket	'-' inside the bracket
Example	y = f(2x)	y = f(x)	y = f(-x) $y = f(-x)$
	y = f(x)		
	A ×		9\ ×
		y = -f(x)	

Worked example

The curve y = f(x) has a vertex at (2, 3). Write down the coordinates of the vertex of the curve with equation

(a)
$$y = f(x - 2)$$
 (4, 3)

(b)
$$y = 2f(x)$$
 (2, 6)

y = f(x - 2) is a translation 2 units right along the x-axis. y = 2f(x) is a stretch in the vertical direction, scale factor 2.

and have been a substitute of the substitute of

Now try this

The curve y = f(x) has a minimum point at (2, -1).

(a) Write down the coordinates of the minimum point of the curve with equation

(i)
$$y = f(x + 2)$$

(ii)
$$y = 3f(x)$$

(iii)
$$y = f(2x)$$

(3 marks)

The curve y = f(x) is reflected in the y-axis.

(b) Find the equation of the curve following this transformation. (1 mark)

a part and become day a land a super super super sure

45